# ANNA UNIVERSITY, CHENNAI NON- AUTONOMOUS COLLEGES AFFILIATED TO ANNA UNIVERSITY M. TECH., TEXTILE TECHNOLOGY REGULATIONS 2025

### PROGRAMME OUTCOMES (POs):

| РО  | Programme Outcomes                                                                                                                                                                                                   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO1 | An ability to independently carry out research /investigation and development work to solve practical problems                                                                                                       |
| PO2 | An ability to write and present a substantial technical report/document.                                                                                                                                             |
| PO3 | Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program |

## PROGRAMME SPECIFIC OUTCOMES(PSOs):

| PSO  | Programme Specific Outcomes                                                 |
|------|-----------------------------------------------------------------------------|
| PSO1 | Apply textile technology knowledge to develop innovative processes/products |
| P301 | and manage industrial operations effectively.                               |
| PSO2 | Demonstrate ethical responsibility and apply engineering and management     |
| P302 | principles to lead and execute projects in multidisciplinary teams.         |



### **ANNA UNIVERSITY, CHENNAI**

### POSTGRADUATE CURRICULUM (NON-AUTONOMOUS AFFILIATED INSTITUTIONS)

Programme: M. Tech., Textile Technology Regulations: 2025

L - Laboratory Course

### **Abbreviations:**

**BS** – Basic Science (Mathematics)

**ES –** Engineering Science (General (G)), T – Theory

Programme Core (**PC**), Programme

Elective (PE)

**SD** – Skill Development **LIT** – Laboratory Integrated Theory

SL – Self Learning PW – Project Work

OE – Open Elective TCP – Total Contact Period(s)

|               |         | Se                                          | mester - | 1 |                     |    |    |    |         |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |     |         |          |
|---------------|---------|---------------------------------------------|----------|---|---------------------|----|----|----|---------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|-----|---------|----------|
| S.<br>No.     | Course  | Course Title                                | Type     |   | Periods<br>per week |    |    |    |         |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ТСР | Credits | Category |
| NO.           | Code    |                                             |          | L | Т                   | Р  |    |    |         |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |     |         |          |
| 1.            | MA25C08 | Statistics for<br>Technologists             | Т        | 3 | 1                   | 0  | 4  | 4  | ES (PC) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |     |         |          |
| 2.            | TX25101 | Polymer and Fibre<br>Physics                | LIT      | 3 | 0                   | 2  | 5  | 4  | ES (PC) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |     |         |          |
| 3.            | TX25102 | Theory of Short Staple Spinning             | Т        | 3 | 0                   | 0  | 3  | 3  | ES (PC) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |     |         |          |
| 4.            | TX25103 | Advances in Fabric Formation                | Т        | 3 | 0                   | 0  | 3  | 3  | ES (PC) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |     |         |          |
| 5.            | TX25104 | Wetting and Wicking of<br>Textile Materials | Т        | 3 | 0                   | 0  | 3  | 3  | ES (PC) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |     |         |          |
| 6.            | TX25105 | Textile Product Development Laboratory      | L        | 0 | 0                   | 4  | 4  | 2  | SD      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |     |         |          |
| 7.            | TX25106 | Technical Seminar                           | -        | 0 | 0                   | 2  | 2  | 1  | SD      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |     |         |          |
| Total Credits |         |                                             |          |   |                     | ts | 24 | 20 |         |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |     |         |          |

|           | Semester - II  |                                              |      |                  |   |     |         |          |         |
|-----------|----------------|----------------------------------------------|------|------------------|---|-----|---------|----------|---------|
| S.<br>No. | Course<br>Code | Course Title                                 | Type | Periods per week |   | ТСР | Credits | Category |         |
| NO.       | Code           |                                              |      | L                | T | Р   |         |          |         |
| 1.        |                | Theory of Textile<br>Structures              | Т    | 2                | 1 | 0   | 3       | 3        | ES (PC) |
| 2.        |                | Automotive Textiles                          | Т    | 3                | 0 | 0   | 3       | 3        | ES (PC) |
| 3.        |                | Textiles for Protection                      | Т    | 3                | 0 | 0   | 3       | 3        | ES (PC) |
| 4.        |                | Theory of Coloration and Functional Finishes | Т    | 3                | 0 | 0   | 3       | 3        | ES (PC) |
| 5.        |                | Programme Elective I                         | Т    | 3                | 0 | 0   | 3       | 3        | ES (PE) |
| 6.        |                | Industry Oriented Course I                   |      | 1                | 0 | 0   | 1       | 1        | SD      |
| 7.        |                | Evaluation of Textile<br>Materials           | Т    | 3                | 0 | 0   | 3       | 3        | ES (PC) |
| 8.        |                | Evaluation of Technical Textile Laboratory   | L    | 0                | 0 | 4   | 4       | 2        | SD      |
| 9.        |                | Advanced Textile Testing<br>Laboratory       | L    | 0                | 0 | 4   | 4       | 2        | SD      |
| 10.       |                | Self Learning Course                         |      | -                | - | -   | -       | 1        | -       |
|           | Total Credits  |                                              |      |                  |   |     | 27      | 24       |         |

|                     |        | Se                                     | mester – | - |                  |    |    |         |          |
|---------------------|--------|----------------------------------------|----------|---|------------------|----|----|---------|----------|
| S.                  | Course | Course Title                           | Туре     |   | Periods per week |    |    | Credits | Category |
| No.                 | Code   |                                        |          | L | Т                | Р  |    |         |          |
| THE                 | DRY    |                                        |          | _ |                  |    |    |         |          |
| 1.                  |        | Programme Elective II                  | Т        | 3 | 0                | 0  | 3  | 3       | ES (PE)  |
| 2.                  |        | Programme Elective III                 | Т        | 3 | 0                | 0  | 3  | 3       | ES (PE)  |
| 3.                  |        | Programme Elective IV                  | Т        | 3 | 0                | 0  | 3  | 3       | ES (PE)  |
| 4.                  |        | Industry Oriented Course II            |          | 1 | 0                | 0  | 1  | 1       | SD       |
| 5.                  |        | Open Elective                          |          | 3 | 0                | 0  | 3  | 3       |          |
| 6.                  |        | Textile Product Engineering Laboratory | L        | 0 | 0                | 4  | 4  | 2       | SD       |
| 7.                  |        | Project Work I                         |          | 0 | 0                | 12 | 12 | 6       | SD       |
| Total Credits 29 21 |        |                                        |          |   |                  | 21 |    |         |          |

|                    | Semester IV |                 |      |                          |      |    |    |    |    |   |  |  |  |   |  |   |  |       |  |   |  |   |  |   |  |   |  |   |  |   |  |   |  |                                       |  |  |  |   |  |   |  |   |  |         |          |
|--------------------|-------------|-----------------|------|--------------------------|------|----|----|----|----|---|--|--|--|---|--|---|--|-------|--|---|--|---|--|---|--|---|--|---|--|---|--|---|--|---------------------------------------|--|--|--|---|--|---|--|---|--|---------|----------|
| S. No. Course Code |             | Course Title    | Туре | Periods per<br>Type week |      | -  |    | -  |    | - |  |  |  | - |  | - |  | I - I |  | - |  | - |  | - |  | - |  | - |  | - |  | - |  | · · · · · · · · · · · · · · · · · · · |  |  |  | - |  | - |  | - |  | Credits | Category |
|                    | Code        |                 |      | L                        | Т    | Р  |    |    |    |   |  |  |  |   |  |   |  |       |  |   |  |   |  |   |  |   |  |   |  |   |  |   |  |                                       |  |  |  |   |  |   |  |   |  |         |          |
| 1.                 |             | Project Work II |      | 0                        | 0    | 24 | 24 | 12 | SD |   |  |  |  |   |  |   |  |       |  |   |  |   |  |   |  |   |  |   |  |   |  |   |  |                                       |  |  |  |   |  |   |  |   |  |         |          |
| Total Credits      |             |                 |      |                          | dits | 24 | 12 |    |    |   |  |  |  |   |  |   |  |       |  |   |  |   |  |   |  |   |  |   |  |   |  |   |  |                                       |  |  |  |   |  |   |  |   |  |         |          |

# PROGRAMME ELECTIVE COURSES (PE)

| S.  | Course | Course Title                                             | Р | eriod | s | Total<br>Contact | Credits |
|-----|--------|----------------------------------------------------------|---|-------|---|------------------|---------|
| No. | Code   | Course Title                                             | L | Т     | Р | Periods          | Credits |
| 1.  |        | Alternative Spinning System                              | 3 | 0     | 0 | 3                | 3       |
| 2.  |        | Process Control and Optimization in Yarn Spinning        | 3 | 0     | 0 | 3                | 3       |
| 3.  |        | Bioprocessing of Textiles                                | 3 | 0     | 0 | 3                | 3       |
| 4.  |        | High Performance Textiles                                | 3 | 0     | 0 | 3                | 3       |
| 5.  |        | Coated and Laminated Textiles                            | 3 | 0     | 0 | 3                | 3       |
| 6.  |        | Sustainability in Textile Industry                       | 3 | 0     | 0 | 3                | 3       |
| 7.  |        | Textile Reinforced Composites                            | 3 | 0     | 0 | 3                | 3       |
| 8.  |        | Filtration Textiles                                      | 3 | 0     | 0 | 3                | 3       |
| 9.  |        | Clothing Science                                         | 3 | 0     | 0 | 3                | 3       |
| 10. |        | Functional Dyes                                          | 3 | 0     | 0 | 3                | 3       |
| 11. |        | Sports and Agro Textiles                                 | 3 | 0     | 0 | 3                | 3       |
| 12. |        | Synthesis and Application of Nanomaterials in Textile    | 3 | 0     | 0 | 3                | 3       |
| 13. |        | Electrically Conductive and Electronic Wearable Textiles | 3 | 0     | 0 | 3                | 3       |
| 14. |        | Medical and Hygiene Textiles                             | 3 | 0     | 0 | 3                | 3       |
| 15. |        | Recycling of Textiles                                    | 3 | 0     | 0 | 3                | 3       |
| 16. |        | Surface Treatments for Textiles                          | 3 | 0     | 0 | 3                | 3       |

# Semester I

| MA25C08 | Statistics for Technologists  | L | L T P | Р | С |
|---------|-------------------------------|---|-------|---|---|
| WAZJOU  | Statistics for reclinologists | 3 | 1     | 0 | 4 |

To make the students to learn about the

- Probability distributions, sampling and testing of hypothesis.
- Process control using charts and process capability.
- · Design of experiments for industry applications and
- Modeling the probabilistic phenomena.

**Probability Distribution and Estimations:** Applications of Binomial, Poisson, normal, t, exponential, chi-square, F and Weibull distributions in engineering; point estimates and interval estimations of the parameters of the distribution functions.

**Activity:** Use real or simulated data sets to fit different probability distributions (Binomial, Poisson, Normal, Weibull, etc.) using software or spreadsheets.

**Hypothesis Testing:** Sampling distribution; significance tests applicable—normal test, t-test, chi-square test and F- test; p-Values; selection of sample size and significance levels with relevance to industry applications; acceptance sampling.

Activity: Perform hypothesis tests (t-test, Chi-square, F-test) and interpret results.

**Analysis of Variance and Non-Parametric Tests:** Analysis of variance for different models; non-parametric tests – sign test, rank test, concordance test.

Activity: Conduct ANOVA and non-parametric tests on sample data.

**Process Control and Capability Analysis:** Control charts for variables and attributes – basis, development, interpretation, sensitizing rules, average run length; process capability analysis.

**Activity:** Create control charts and calculate process capability.

**Design and Analysis of Experiments:** 2k full-factorial designs; composite designs; robust designs; development of regression models, regression coefficients; adequacy test; process optimizations.

**Activity:** Demenstration of Design of experiments software tool.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%

**Assessment Methodology:** Quiz (20%), Assignments (30%), Internal Examinations (50%)

- 1 Chatfield, C. (1983). *Statistics for technology: A course in applied statistics*. Routledge. https://doi.org/10.1201/9780203738467
- 2 Leaf, G. A. V. (1984). *Practical statistics for the textile industry* (Parts I & II). The Textile Institute.
- 3 Moen, R. D., Nolan, T. W., & Provost, L. P. (1998). *Quality improvement through planned experimentation*. McGraw-Hill.
- 4 Montgomery, D. C. (2000). Design and analysis of experiments. John Wiley & Sons.
- 5 Montgomery, D. C. (2002). *Introduction to statistical quality control*. John Wiley & Sons

|     | Description of CO                                                                | РО                            | PSO1 | PSO2 |
|-----|----------------------------------------------------------------------------------|-------------------------------|------|------|
| CO1 | Apply probability distributions to analyze and interpret engineering data.       | PO1 (3),<br>PO2(2),           | 2    | 1    |
| CO2 | Perform hypothesis testing, ANOVA, and non-parametric tests for decision-making. | PO1 (3),<br>PO2(2),<br>PO4(2) | 3    | 2    |
| CO3 | Construct control charts and assess process capability in quality control.       | PO1 (3),<br>PO2(2),<br>PO4(2) | 1    | 2    |
| CO4 | Design and analyze experiments for process optimization.                         | PO1 (3),<br>PO2(2),<br>PO4(2) | 1    | 3    |

| TX25101 | Polymer and Fibre Physics  | L | Т | Р | С |
|---------|----------------------------|---|---|---|---|
| 1723101 | Folymer and rible Filysics | 3 | 0 | 2 | 4 |

To enable the students to learn about

- Fundamentals of fibre forming polymer and its characteristics, polymerization techniques.
- Different types of polymer and its nature, properties of polymeric fibres.
- Conducting of experiments to characterize the polymers, fibres, yarn.

**Fundamentals of Polymer:** Classification of polymers; Fundamental definitions; synthetic fibre forming polymers; fundamental concepts of polymerization; molecular architecture in polymers, configuration, conformation; molecular weight and its influence on fibre formation.

**Activity:** Identify and classify different polymers; analyze molecular structures using sample data.

**Polymerization and Kinetics of Polymerization:** Chemistry of polymerization – chain polymerization, step polymerization; free radical polymerization – cationic polymerization – anionic polymerization; polycondensation; dilute solution properties, thermodynamics, kinetics of chain and step polymers, concentrated polymer solutions and polymer melts; molecular weight and size; viscosity, average molecular weight, degree of polymerization and polydispersity.

**Activity:** Model polymerization kinetics using reaction rate data; compare chain vs step polymerization.

**Rubbery and Glassy Polymers:** Polymer micro structure, chemical, geometrical; rubber elastic state, thermo-elastic behaviour and thermodynamics: energetic and entropic elastic forces; mechanical theory of rubber elasticity; swelling of rubbers in solvents; the glassy amorphous state- amorphous polymers, the glass transition temperature, non-equilibrium features of glassy polymers and physical ageing, theories for the glass transition, mechanical behaviour of glassy, amorphous polymers, structure of glassy, amorphous polymers.

**Activity:** Perform experiments or simulations on rubber elasticity and glass transition behavior.

**Molten and Crystalline Polymers:** The molten state, fundamental concepts in rheology, measurement of rheological properties of molten polymers, flexible-chain polymers, liquid-crystalline polymers; crystalline polymers- polymer crystallography, the crystal lamella, crystals grown from the melt and the crystal lamella stack, lattice indices, super molecular structure-methods of assessing super molecular structure, relaxation processes in semicrystalline polymers.

**Activity:** Measure and analyze rheological properties of polymer melts; study crystalline structures with microscopy images.

**Structure-Property Relationships:** Mechanical properties of natural and synthetic fibres; moisture sorption behaviour of natural and synthetic fibres; thermal, frictional and optical properties of fibres.

**Activity:** Test mechanical and thermal properties of natural vs synthetic fibers; analyze moisture absorption data.

Weightage: Continuous Assessment: 50%, End Semester Examinations: 50%

**Assessment Methodology:** Quiz (5%), Assignments (20%), Flipped Class (5%), Practical (30%), Internal Examinations (40%)

### **List of Experiments**

- 1. Molecular weight determination using GPC
- 2. Rheological studies using Brookefield viscometer
- 3. Determination of MFI
- 4. Birefringence measurement
- 5. Creep and Stress relaxation of filament
- 6. DSC Thermogram analysis of different fibres
- 7. Analysis of spectrogram
- 8. Analysis of VL curve
- 9. Interpretation of imperfections and faults
- 10. Analysis of tensile behavior of yarns
- 11. Thermal stability studies on fibres using TGA
- 12. Analysis FTIR spectrograph and NMR graphs
- 13. Determination of crystallinity by XRD

- 1. Baird, D. G., & Collias, D. I. (2014). Polymer processing: Principles and design. Wiley.
- 2. Billmeyer, F. W. (1984). Textbook of polymer science (3rd ed.). Wiley.
- 3. Gedde, U. W. (1995). Polymer physics. Chapman & Hall.
- 4. Gordon, M. (1963). High polymers. Addison-Wesley.
- 5. Gupta, V. B., & Kothari, V. K. (1985). Man-made fibre production. Chapman & Hall.
- 6. Hongu, T., & Phillips, G. (1997). New fibres. Woodhead Publishing.
- 7. Kothari, V. K. (2000). Textile fibres: Developments and innovations. IAFL Publication.
- 8. Odian, G. (1991). Principles of polymerization (3rd ed.). Wiley.
- 9. Sperling, L. H. (1986). Introduction to physical polymer science. Wiley.
- 10. Walczak, Z. K. (2002). Processes of fiber formation. Elsevier Science.
- 11. Zhang, X. (2014). Fundamentals of fiber science. DEStech Publications.

|     | Description of CO                                                                        | РО                            | PSO1 | PSO2 |
|-----|------------------------------------------------------------------------------------------|-------------------------------|------|------|
| CO1 | Classify polymers and interpret their molecular structures and architectures.            | PO1 (3),<br>PO2(2),           | 1    | 2    |
| CO2 | Explain polymerization methods and analyze their reaction kinetics.                      | PO1 (3),<br>PO2(2),<br>PO4(2) | 2    | 3    |
| CO3 | Evaluate the mechanical, rheological, and crystalline behavior of polymers.              | PO1 (3),<br>PO2(2),<br>PO4(2) | 1    | 2    |
| CO4 | Correlate polymer structure with thermal, mechanical, and moisture properties in fibers. | PO1 (3),<br>PO2(2),<br>PO4(2) | 1    | 3    |

| TX25102 | Theory of Short Stanle Spinning  |   |   |   | С |
|---------|----------------------------------|---|---|---|---|
| 1723102 | Theory of Short Staple Spiriting | 3 | 0 | 0 | 3 |

 To enable the students to learn the theory of various operations carried out at different stages of yarn spinning

**Fibre Dispersion and Cleaning:** Necessity of fibre-individualization; fibre opening and cleaning in blow-room machinery; forces acting on the fibre during carding operation; the mechanism of fibre dispersion, fibre transfer, short fibre removal and trash removal; entanglement and disentanglement of fibres; the new approaches to improve fibre-dispersion in carding operation; mechanism of removal of short fibre and trash in comber.

**Activity:** Observe and analyze fibre dispersion and trash removal efficiency in carding machine samples.

**Fibre Straightening, Neps Removal:** Theory of hook formation; measurement of fibre extent, influence of fibre extent on yarn quality; improvement of fibre-extent by carding, drafting and combing actions; generation of neps, neps removal in carding and combing.

**Activity:** Measure fibre extent and assess nep count before and after carding/combing.

**Attenuation:** Principle of roller drafting and its application in yarn production; ideal drafting; factors affecting drafting force, fibre dynamics during drafting, drafting irregularities and their causes and remedies; effect of amount of draft and draft distribution on strand irregularity; the function of aprons in roller drafting; limitation of apron-drafting and the scope for improvement; mechanism of wire-point drafting and its application in yarn production; merits and demerits of wire-point drafting; comparison of wire-point drafting with roller drafting.

Activity: Conduct drafting experiments to identify irregularities and evaluate drafting force.

**Twisting:** Twisted yarn geometry, forces acting on fibre and yarn during twisting, effect of fibre helix angle on strength, parameters affecting optimum twist level; balloon and spinning triangle formation and their effects on yarn quality and productivity; fundamental requirement to create real twist in a strand, mechanism of twisting in ring spinning, separation of twisting and winding actions of yarn; ply twisting, twist balance; modified twisting principles - open end twisting, false twisting, two nozzle air-jet twisting, air-vortex twisting, up-twisting, two-for-one twisting, hollow-spindle twisting; merits and demerits of modern twisting system.

**Activity:** Test yarn samples with varying twist levels to study effects on strength and quality.

**Fibre Blending and Levelling:** Importance of achieving homogeneous blending in fibre-mix; types of mixing during spinning preparatory process; lateral and longitudinal fibre blending; analysis of fibre blend index values; process parameters of spinning machinery for processing blended material; influence of intermediate product uniformity on yarn uniformity; different methods of levelling adopted during spinning processes.

**Activity:** Calculate blend uniformity using blend index and compare yarn uniformity from blended fibres.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%

**Assessment Methodology:** Quiz (20%), Assignments (30%), Internal Examinations (50%)

- 1. Grosberg, P., & lype, C. (1999). Yarn production: Theoretical aspects. Textile Institute.
- 2. Iredale, J. A. (1992). Yarn preparation: A handbook. Intermediate Technology.
- 3. Klein, W. (2014). The Rieter manual of spinning, Vol. 1. Rieter Machine Works Ltd.
- 4. Klein, W. (2014). The Rieter manual of spinning, Vol. 2. Rieter Machine Works Ltd.
- 5. Klein, W. (2014). The Rieter manual of spinning, Vols. 1–3. Rieter Machine Works Ltd.
- 6. Lawrence, C. A. (2003). Fundamentals of spun yarn technology. CRC Press.
- 7. Lord, P. R. (1999). Yarn production: Science, technology and economics. Textile Institute.
- 8. Oxtoby, E. (1987). Spun yarn technology. Butterworth.
- 9. Salhotra, K. R., & Chattopadhyay, R. (1998). Book of papers on blow room, card. Indian Institute of Technology Delhi.
- 10. Shaw, J. (1982). Short-staple ring spinning. Textile Progress, The Textile Institute.

|     | Description of CO                                                  | РО                            | PSO1 | PSO2 |
|-----|--------------------------------------------------------------------|-------------------------------|------|------|
| CO1 | Explain the fibre dispersion and cleaning for yarn production.     | PO1(3),<br>PO2(2),            | 2    | 3    |
| CO2 | Improve fibre straightening and nep removal techniques.            | PO1(3),<br>PO2(2),<br>PO4(2)  | 3    | 2    |
| CO3 | Analyze and correct irregularities in the drafting process.        | PO1 (3),<br>PO2(2),<br>PO4(2) | 2    | 1    |
| CO4 | Apply modern twisting and blending techniques for yarn uniformity. | PO1 (3),<br>PO2(2),<br>PO4(2) | 1    | 3    |

| TV25402 | TX25103 | Advances In Fabric Formation | L | Т | Р | С |
|---------|---------|------------------------------|---|---|---|---|
|         | 1723103 | Advances in Fabric Formation | 3 | 0 | 0 | 3 |

To enable the students to learn about

 Advances in fabric formation and their structural features, characteristics and application.

**Woven Fabrics:** Principle of fabric formation and fabric structure – circular woven fabrics, narrow fabric; advances in 3-D woven fabrics – principle of hollow, shell and nodal fabric formations; Noobing – principle and fabric structure; applications.

**Activity:** Examine and compare samples of circular, 3D woven, and noobing fabrics.

**Knitted Fabrics:** Advances in circular knitting – loop transfer, seam less knitting and sliver knitting techniques; 3-D knitted fabrics – circular and flat weft knit techniques, applications; spacer fabrics – weft and warp knit techniques, applications.

Activity: Identify knitting techniques by analyzing various knitted fabric samples.

**Braided Fabrics:** Principle and production of 3-D braided structures – Cartesian braiding, rotary braiding, and hexagonal; advances in track and column braiding – production of tubular and bifurcated structure; applications.

**Activity:** Observe and classify different 3D braided structures using fabric samples or images.

**Auxetic Fabrics:** Introduction to auxetic materials – polymer, fiber and yarn; Auxetic fabric structure; principle and production of woven, weft knit, warp knit and nonwoven auxetic fabrics; 3D auxetic fabrics; braided auxetic fabrics; applications.

**Activity:** Test mechanical properties of auxetic fabric samples and observe their unique behavior.

**Smart Fabrics:** Definition and classifications; production and development of smart fibre and yarn; smart fabric structure and preparation, weaving, knitting and braiding technique; applications.

**Activity:** Research and present applications of different smart fabrics in industry.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%

**Assessment Methodology:** Quiz (20%), Assignments (30%), Internal Examinations (50%)

- 1. Au, K. F. (2011). Advances in knitting technology. Woodhead Publishing.
- 2. Chen, X. (2015). Advances in 3D textiles. Woodhead Publishing.
- 3. Kellie, G. (2016). Advances in technical nonwovens. Woodhead Publishing.
- 4. Kyosev, Y. (2016). Recent developments in braiding and narrow weaving. Springer.

- 5. McLoughlin, J., & Sabir, T. (2018). High-performance apparel. Woodhead Publishing.
- 6. Vassiliadis, S. (2011). Advances in modern woven fabrics technology. InTech.

|     | Description of CO                                                                                    | РО                            | PSO1 | PSO2 |
|-----|------------------------------------------------------------------------------------------------------|-------------------------------|------|------|
| CO1 | Explain the principles and structural variations of woven fabrics, including 3D and noobing fabrics. | PO1(3),<br>PO2(2),            | 3    | 2    |
| CO2 | Describe advanced knitting techniques and identify different knitted fabric types.                   | PO1(3),<br>PO2(2),<br>PO4(2)  | 2    | 3    |
| CO3 | Classify braided fabric structures and explain various braiding methods.                             | PO1 (3),<br>PO2(2),<br>PO4(2) | 3    | 2    |
| CO4 | Analyze the production techniques and unique properties of auxetic fabrics.                          | PO1 (3),<br>PO2(2),<br>PO4(2) | 1    | 3    |

| TX25104 | Wetting and Wicking of Textile Materials | L                                        | Т | Р | С |   |
|---------|------------------------------------------|------------------------------------------|---|---|---|---|
|         | 1723104                                  | Wetting and Wicking of Textile Materials | 3 | 0 | 0 | 3 |

This course aims

- To enable the students to analyse the mathematical representation of power system components and solution techniques and generalise the power flow analysis using various methods.
- To infer the knowledge of the different types of faults and its calculation using computer method and mathematical model.
- To know the concept of numerical integration methods to analyse power system transient stability.

**Fundamentals on Wetting:** Surface tension of liquids and theories on its measurements; equilibrium state of a liquid on a solid; solid-liquid interaction in immersion, penetration, adhesion and spreading.

**Activity:** Measure surface tension of liquids using standard methods and analyze wetting behavior on solids.

**Characterization of Wetting:** Determination of wetting force and work of adhesion; measurement of contact angle using Goniometry and tensiometry; critical assessment of the above techniques; importance of wetting of fabrics and its assessment.

**Activity:** Use a goniometer to measure contact angles on fabric samples and interpret results.

**Wicking in yarns and Fabrics:** Fundamentals of wicking; wicking in yarns and its measurement; wicking in fabrics from an infinite and finite reservoir; studies on factors affecting wetting and wicking in fibres and fibrous assemblies; mathematical models of wetting and wicking.

**Activity:** Perform wicking tests on yarn and fabric samples; analyze effect of different parameters.

**Modification of Substrates:** Effect of substrate modification on wetting and wicking behavior: chemical, enzyme, plasma; coating and lamination; finishing.

**Activity:** Compare wicking behavior before and after substrate modification treatments.

**Application:** Areas of wetting and wicking of fibrous materials; role of wetting and wicking on dyeing and printing, and comfort behavior of textiles; significance of wetting and wicking in medical and hygiene products; usefulness of wetting and wicking in industrial and domestic products.

**Activity:** Case study analysis of wetting and wicking impact on textile applications.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%

**Assessment Methodology:** Quiz (20%), Assignments (30%), Internal Examinations (50%)

- 1 Huang, H., Ye, C., & Sun, W. (2008). Moisture transport in fibrous clothing assemblies. *Journal of Engineering Mathematics*.
- 2 Ningtao. (2009). *Liquid transport and wicking in nonwoven materials*. VDM Verlag Dr. Müller.
- 3 Pan, N., & Gibson, P. (2006). *Thermal and moisture transport in fibrous materials*. Woodhead Publishing.
- 4 Pan, N., & Zhong, W. (2006). Fluid transport phenomenon in fibrous materials. *Journal of Textile Progress, 38*(1).
- 5 Patnaik, A., Rengasamy, R. S., Kothari, V. K., & Ghosh, A. (2006). Wetting and wicking in fibrous materials. *Journal of Textile Progress*, *38*(1).

|     | Description of CO                                                                        | РО                            | PSO1 | PSO2 |
|-----|------------------------------------------------------------------------------------------|-------------------------------|------|------|
| CO1 | Explain the fundamentals of wetting, surface tension, and their role in textiles.        | PO2(2),<br>PO4(2)             | 2    | 3    |
| CO2 | Measure and interpret wetting behavior using contact angle techniques.                   | PO1(3),<br>PO2(2),<br>PO4(2)  | 3    | 1    |
| CO3 | Describe wicking mechanisms in yarns and fabrics.                                        | PO1 (3),<br>PO2(2),<br>PO4(2) | 3    | 2    |
| CO4 | Evaluate how substrate modifications affect wetting and wicking in textile applications. | PO1 (3),<br>PO2(2),<br>PO4(2) | 2    | 2    |

| TX25105 Textile Product Development Laboratory | L                                      | Т | Р | С |   |
|------------------------------------------------|----------------------------------------|---|---|---|---|
| 1723103                                        | rextile Froduct Development Laboratory | 0 | 0 | 4 | 2 |

This course aims

- To enable the students to analyse the mathematical representation of power system components and solution techniques and generalise the power flow analysis using various methods.
- To infer the knowledge of the different types of faults and its calculation using computer method and mathematical model.
- To know the concept of numerical integration methods to analyse power system transient stability.
- 1. Development of narrow fabric
- 2. Development of flat bed- knit structure
- 3. Development of seamless garment
- 4. Development of nanofibrous web
- 5. Development of fibrous web
- 6. Development of textile reinforced composite
- 7. Development of core spun yarn
- 8. Development of metalized yarn
- 9. Development of metalized fabric
- 10. Development of electronic textile
- 11. Development of multilayer fabric and laminated

Weightage: Continuous Assessment: 60%, End Semester Examinations: 40%

**Assessment Methodology:** Project (30%), Assignment (10%), Practical (30%), Internal Examinations (30%)

|     | Description of CO                                                  | РО                            | PSO1 | PSO2 |
|-----|--------------------------------------------------------------------|-------------------------------|------|------|
| CO1 | Develop advanced textile structures and innovative yarns.          | PO2(2),<br>PO4(2)             | 2    | 3    |
| CO2 | Fabricate specialized fabrics and textile composites.              | PO1(3),<br>PO2(2),<br>PO4(2)  | 3    | 1    |
| CO3 | Create smart and electronic textiles with functional applications. | PO1 (3),<br>PO2(2),<br>PO4(2) | 3    | 2    |